对数的运算法则及公式推导 对数的运算法则及公式N的范围

对数的运算法则及公式?

对数函数运算法则公式是如果a^x=N(a>0,且a≠1),则x叫做以a为底N的对数,记做x=log(a)(N),其中a要写于log右下。其中a叫做对数的底,N叫做真数。通常将以10为底的对数叫做常用对数,以e为底的对数称为自然对数。

一般地,对数函数是以幂(真数)为自变量,指数为因变量,底数为常量的函数。

对数函数是6类基本初等函数之一。其中对数的定义:

如果ax =N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。

一般地,函数y=logaX(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。

其中x是自变量,函数的定义域是(0,+∞),即x>0。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函数里对于a的规定,同样适用于对数函数。

延伸阅读

对数的概念与运算?

对数

在数学中,对数是对求幂的逆运算,正如除法是乘法的逆运算,反之亦然。

这意味着一个数字的对数是必须产生另一个固定数字(基数)的指数。

在简单的情况下,乘数中的对数计数因子。

更一般来说,乘幂允许将任何正实数提高到任何实际功率,总是产生正的结果,因此可以对于b不等于1的任何两个正实数b和x计算对数。

如果a的x次方等于N(a>0,且a≠1),那么数x叫做以a为底N的对数(logarithm),记作x=logaN。

其中,a叫做对数的底数,N叫做真数。

对数算法?

计算对数我们利用对数公式即可,按照对数函数y=log(a)X,已知常数a的大小,再代入未知数X,既可以求出Y的值。这里的Y就是X以a为底的时对数。

  对数公式是数学公式中的一种,a^Y=X(a>0,且a≠1),则Y=log(a)X。在这个公式中,a叫做底数,X叫做真数,而Y叫做以a为底的X的对数。当a=10时,其对数叫做常用对数;当对数公式以e为底时,这时的对数就叫做自然对数。

对数公式的运算法则?

log公式运算法则:

如果a>0,a≠1,M>0,N>0,那么

(1)loga(MN)=logaM+logaN

(2)logaMN=logaM-logaN

(3)logaMn=nlogaM (n∈R)

扩展资料:

换底公式:logMN=logaM/logaN 换底公式导出 logMN=-logNM

推导公式:log(1/a)(1/b)=log(a^-1)(b^-1)=-1logab/-1=loga(b) loga(b)*logb(a)=1 loge(x)=ln(x) lg(x)=log10(x)

版权声明