多元线性回归定义?
多元线性回归
在回归分析中,如果有两个或两个以上的自变量,就称为多元回归。
事实上,一种现象常常是与多个因素相联系的,由多个自变量的最优组合共同来预测或估计因变量,比只用一个自变量进行预测或估计更有效,更符合实际。
因此多元线性回归比一元线性回归的实用意义更大。
概念
社会经济现象的变化往往受到多个因素的影响,因此,一般要进行多元回归分析,我们把包括两个或两个以上自变量的回归称为多元线性回归。
多元线性回归的基本原理和基本计算过程与一元线性回归相同,但由于自变量个数多,计算相当麻烦,一般在实际中应用时都要借助统计软件。
这里只介绍多元线性回归的一些基本问题。
但由于各个自变量的单位可能不一样,比如说一个消费水平的关系式中,工资水平、受教育程度、职业、地区、家庭负担等等因素都会影响到消费水平,而这些影响因素(自变量)的单位显然是不同的,因此自变量前系数的大小并不能说明该因素的重要程度,更简单地来说,同样工资收入,如果用元为单位就比用百元为单位所得的回归系数要小,但是工资水平对消费的影响程度并没有变,所以得想办法将各个自变量化到统一的单位上来。
前面学到的标准分就有这个功能,具体到这里来说,就是将所有变量包括因变量都先转化为标准分,再进行线性回归,此时得到的回归系数就能反映对应自变量的重要程度。
这时的回归方程称为标准回归方程,回归系数称为标准回归系数,表示如下:
由于都化成了标准分,所以就不再有常数项 a 了,因为各自变量都取平均水平时,因变量也应该取平均水平,而平均水平正好对应标准分 0 ,当等式两端的变量都取 0 时,常数项也就为 0 了。
多元线性回归与一元线性回归类似,可以用最小二乘法估计模型参数,也需对模型及模型参数进行统计检验。
选择合适的自变量是正确进行多元回归预测的前提之一,多元回归模型自变量的选择可以利用变量之间的相关矩阵来解决。
延伸阅读
如何用SPSS实现多个因变量的多元线性回归分析?
在大多数的实际问题中,影响因变量的因素不是一个而是多个,我们称这类回问题为多元回归分析。可以建立因变量y与各自变量xj(j=1,2,3,…,n)之间的多元线性回归模型:
其中:b0是回归常数;bk(k=1,2,3,…,n)是回归参数;e是随机误差。
多元回归在病虫预报中的应用实例:
某地区病虫测报站用相关系数法选取了以下4个预报因子;x1为最多连续10天诱蛾量(头);x2为4月上、中旬百束小谷草把累计落卵量(块);x3为4月中旬降水量(毫米),x4为4月中旬雨日(天);预报一代粘虫幼虫发生量y(头/m2)。分级别数值列成表2-1。
预报量y:每平方米幼虫0~10头为1级,11~20头为2级,21~40头为3级,40头以上为4级。
预报因子:x1诱蛾量0~300头为l级,301~600头为2级,601~1000头为3级,1000头以上为4级;x2卵量0~150块为1级,15l~300块为2级,301~550块为3级,550块以上为4级;x3降水量0~10.0毫米为1级,10.1~13.2毫米为2级,13.3~17.0毫米为3级,17.0毫米以上为4级;x4雨日0~2天为1级,3~4天为2级,5天为3级,6天或6天以上为4级。
多元线性回归要求正态分布吗?
多元线性回归要求正态分布。
一些教材上会表述为线性回归要求因变量服从正态分布,这本身是正确的。有一个坏处是,可能会引导一些人在回归前专门去对y做一个正态分布的检验,以此来判断是否满足。
多元线性回归是什么数据?
多元线性回归是反映一种现象或事物的数量依多种现象或事物的数量的变动而相应地变动的规律。
其是建立多个变量之间线性或非线性数学模型数量关系式的统计方法。
在处理测量数据时,经常要研究变量与变量之间的关系。变量之间的关系一般分为两种。
一种是完全确定关系,即函数关系;一种是相关关系,即变量之间既存在着密切联系,但又不能由一个或多个变量的值求出另一个变量的值。
多元线性回归与多元逐步回归分析是一回事吗?
不是一回事,多元线性回归分析强调自变量有多个,并且自变量与因变量是线性关系。其中自变量进入回归方程的方式有多种,逐步进入法就是其中之一,因而叫逐步回归分析。除了逐步进入法还有全部进入法、向前、向后法等。(南心网SPSS逐步回归分析)
一元线性回归和多元线性回归?
一元线性是说一个解释变量对被解释变量的影响.多元线性则是多个解释变量对被解释变量的影响.计算一元线性回归方程的最小二乘法是整个回归思想中的核心.在多元线性回归方程中,由于变量的增多,最普遍的会出现异方差性,还会有时序性等影响着回归方程的拟合度,所以这里还要做逐步回归去剔除变量,这就要用到一元线性回归方程.现在我们也可以通过SPSS和Eviews等软件来计算这些.
多元线性回归f检验基本步骤?
步骤一、提出问题的原假设和备择假设;
步骤二、在原假设的条件下,构造统计量F;
步骤三、根据样本信息,计算统计量的值
步骤四、对比统计量的值和理论F分布的值,计算统计量的值超过理论值,则拒绝原假设,否则接受原假设
多元线性回归分析是什么意思?
多元线性回归分析
多元线性回归是指有两个或两个以上的自变量的回归分析。 一种现象常常是与多个因素相联系的,由多个自变量的最优组合共同来预测或估计因变量,比只用一个自变量进行预测或估计更有效,更符合实际,因此多元线性回归比一元线性回归的实用意义更大。