常用的数据分析方法有哪些(数据分析的方法和工具)

数据分析的方法有哪些?

在数据分析中,数据分析思维是框架式的指引,实际分析问题时还是需要很多“技巧工具”的。就好比中学里你要解一元二次方式,可以用公式法、配方法、直接开平方法、因式分解法。

数据分析里也有技巧,在一些通用的分析场景下可以快速使用,而且对未来构建数据分析模型也有帮助。

接下来就分享常见的5种数据分析方法,分别是:公式法、对比法、象限法,二八法,漏斗法,常常多种结合一起使用。

注:主要偏思维层面的,基于业务问题对数据的探索性分析,不同于专业统计学中的数据处理方法。

一、公式法

所谓公式法就是针对某个指标,用公式层层分解该指标的影响因素,这个我在指标化思维中提到过。

举例:分析某产品的销售额较低的原因,用公式法分解

某产品销售额=销售量 X 产品单价

销售量=渠道A销售量 + 渠道B销售量 + 渠道C销售量 + …

渠道销售量=点击用户数 X 下单率

点击用户数=曝光量 X 点击率

第一层:找到产品销售额的影响因素。某产品销售额=销售量 X 产品单价。是销量过低还是价格设置不合理?

第二层:找到销售量的影响因素。分析各渠道销售量,对比以往,是哪些过低了。

第三层:分析影响渠道销售量的因素。渠道销售量=点击用户数X 下单率。是点击用户数低了,还是下单量过低。如果是下单量过低,需要看一下该渠道的广告内容针对的人群和产品实际受众符合度高不高。

第四层:分析影响点击的因素。点击用户数=曝光量X点击率。是曝光量不够还是点击率太低,点击率低需要优化广告创意,曝光量则和投放的渠道有关。

通过对销售额的逐层拆解,细化评估以及分析的粒度。

公式拆解法是针对问题的层级式解析,在拆解时,对因素层层分解,层层剥尽。

二、对比法

对比法就是用两组或两组以上的数据进行比较,是最通用的方法。

我们知道孤立的数据没有意义,有对比才有差异。一些直接描述事物的变量,如长度、数量、高度、宽度等。通过对比得到比率数据,增速、效率、效益等指标,这才是数据分析时常用的。

比如用于在时间维度上的同比和环比、增长率、定基比,与竞争对手的对比、类别之间的对比、特征和属性对比等。对比法可以发现数据变化规律,使用频繁,经常和其他方法搭配使用。

下图的AB公司销售额对比,虽然A公司销售额总体上涨且高于B公司,但是B公司的增速迅猛,高于A公司,即使后期增速下降了,最后的销售额还是赶超。

三、象限法

通过对两种及以上维度的划分,运用坐标的方式表达出想要的价值。由价值直接转变为策略,从而进行一些落地的推动。象限法是一种策略驱动的思维,常于产品分析、市场分析、客户管理、商品管理等。

比如,下图是一个广告点击的四象限分布,X轴从左到右表示从低到高,Y轴从下到上表示从低到高。

高点击率高转化的广告,说明人群相对精准,是一个高效率的广告。

高点击率低转化的广告,说明点击进来的人大多被广告吸引了,转化低说明广告内容针对的人群和产品实际受众有些不符。

高转化低点击的广告,说明广告内容针对的人群和产品实际受众符合程度较高,但需要优化广告内容,吸引更多人点击。

低点击率低转化的广告,可以放弃了。

还有经典的RFM模型,把客户按最近一次消费(Recency)、消费频率(Frequency)、消费金额 (Monetary)三个维度分成八个象限。

象限法的优势:

1.找到问题的共性原因

通过象限分析法,将有相同特征的事件进行归因分析,总结其中的共性原因。例如上面广告的案例中,第一象限的事件可以提炼出有效的推广渠道与推广策略,第三和第四象限可以排除一些无效的推广渠道;

2.建立分组优化策略

针对投放的象限分析法可以针对不同象限建立优化策略,例如RFM客户管理模型中按照象限将客户分为重点发展客户、重点保持客户、一般发展客户、一般保持客户等不同类型。给重点发展客户倾斜更多的资源,比如VIP服务、个性化服务、附加销售等。给潜力客户销售价值更高的产品,或一些优惠措施来吸引他们回归。

四、二八法/帕累托分析

二八法也可以叫帕累托法则,源于经典的二八法则。比如在个人财富上可以说世界上20%的人掌握着80%的财富。而在数据分析中,则可以理解为20%的数据产生了80%的效果需要围绕这20%的数据进行挖掘。往往在使用二八法则的时候和排名有关系,排在前20%的才算是有效数据。二八法是抓重点分析,适用于任何行业。找到重点,发现其特征,然后可以思考如何让其余的80%向这20%转化,提高效果。

一般地,会用在产品分类上,去测量并构建ABC模型。比如某零售企业有500个SKU以及这些SKU对应的销售额,那么哪些SKU是重要的呢,这就是在业务运营中分清主次的问题。

常见的做法是将产品SKU作为维度,并将对应的销售额作为基础度量指标,将这些销售额指标从大到小排列,并计算截止当前产品SKU的销售额累计合计占总销售额的百分比。

百分比在 70%(含)以内,划分为 A 类。

百分比在 70~90%(含)以内,划分为 B 类。

百分比在 90~100%(含)以内,划分为 C 类。

以上百分比也可以根据自己的实际情况调整。

ABC分析模型,不光可以用来划分产品和销售额,还可以划分客户及客户交易额等。比如给企业贡献80%利润的客户是哪些,占比多少。假设有20%,那么在资源有限的情况下,就知道要重点维护这20%类客户。

五、漏斗法

漏斗法即是漏斗图,有点像倒金字塔,是一个流程化的思考方式,常用于像新用户的开发、购物转化率这些有变化和一定流程的分析中。

上图是经典的营销漏斗,形象展示了从获取用户到最终转化成购买这整个流程中的一个个子环节。相邻环节的转化率则就是指用数据指标来量化每一个步骤的表现。所以整个漏斗模型就是先将整个购买流程拆分成一个个步骤,然后用转化率来衡量每一个步骤的表现,最后通过异常的数据指标找出有问题的环节,从而解决问题,优化该步骤,最终达到提升整体购买转化率的目的。

整体漏斗模型的核心思想其实可以归为分解和量化。比如分析电商的转化,我们要做的就是监控每个层级上的用户转化,寻找每个层级的可优化点。对于没有按照流程操作的用户,专门绘制他们的转化模型,缩短路径提升用户体验。

还有经典的黑客增长模型,AARRR模型,指Acquisition、Activation、Retention、Revenue、Referral,即用户获取、用户激活、用户留存、用户收益以及用户传播。这是产品运营中比较常见的一个模型,结合产品本身的特点以及产品的生命周期位置,来关注不同的数据指标,最终制定不同的运营策略。

从下面这幅AARRR模型图中,能够比较明显的看出来整个用户的生命周期是呈现逐渐递减趋势的。通过拆解和量化整个用户生命周期各环节,可以进行数据的横向和纵向对比,从而发现对应的问题,最终进行不断的优化迭代。

不过,单一的漏斗分析是没有用的,不能得出什么结果,要与其它相结合,如与历史数据的对比等。

数据处理分析的方法和工具?

数据处理和分析是广泛应用于各个领域的重要工作。下面是一些常用的数据处理和分析方法以及相关工具:

1. 数据清洗和预处理:

– 数据清理和去重:使用工具如Python的pandas库、OpenRefine等。

– 缺失值处理:常用方法包括删除缺失值、插值填充等。

– 异常值检测和处理:可以使用统计方法、可视化方法、机器学习算法等。

2. 数据可视化:

– 图表和可视化工具:常用的包括Matplotlib、Seaborn、Plotly、Tableau等。

– 交互式可视化:例如D3.js、Bokeh、Plotly等库提供了丰富的交互式可视化功能。

3. 统计分析:

– 描述统计:包括均值、中位数、标准差、百分位数等。

– 探索性数据分析(EDA):使用统计图表和可视化工具来发现数据的模式和关系。

– 假设检验和推断统计:用于验证假设和进行统计推断的方法,如t检验、ANOVA、回归分析等。

– 时间序列分析:用于处理时间相关数据的方法,如移动平均、指数平滑、ARIMA模型等。

4. 机器学习和数据挖掘:

– 监督学习:包括线性回归、逻辑回归、决策树、支持向量机、随机森林等方法。

– 无监督学习:例如聚类算法(K-means、层次聚类等)和降维算法(主成分分析、t-SNE等)。

– 深度学习:常用的深度学习框架包括TensorFlow、Keras、PyTorch等。

– 关联规则挖掘:用于发现数据集中的频繁项集和关联规则的方法,如Apriori算法。

5. 大数据处理和分析:

– 分布式计算框架:例如Hadoop、Spark等用于处理大规模数据集的分布式计算框架。

– 数据库和SQL:常用的数据库系统如MySQL、PostgreSQL等,使用SQL查询语言进行数据处理和分析。

这只是一些常用的方法和工具,具体选择取决于数据的类型、问题的需求和个人偏好。同时,数据处理和分析领域也在不断发展,新的方法和工具也在涌现。

数据分析的常用方法

数据分析的常用方法如下:

  

  1、列表法。将实验数据按一定规律用列表方式表达出来是记录和处理实验数据最常用的方法。表格的设计要求对应关系清楚、简单明了、有利于发现相关量之间的物理关系;此外还要求在标题栏中注明物理量名称、符号、数量级和单位等;根据需要还可以列出除原始数据以外的计算栏目和统计栏目等。最后还要求写明表格名称、主要测量仪器的型号、量程和准确度等级、有关环境条件参数如温度、湿度等。

  

  2、作图法。作图法可以最醒目地表达物理量间的变化关系。从图线上还可以简便求出实验需要的某些结果(如直线的斜率和截距值等),读出没有进行观测的对应点(内插法)或在一定条件下从图线的延伸部分读到测量范围以外的对应点(外推法)。此外,还可以把某些复杂的函数关系,通过一定的变换用直线图表示出来。例如半导体热敏电阻的电阻与温度关系为,取对数后得到,若用半对数坐标纸,以lgR为纵轴,以1除以T为横轴画图,则为一条直线。

  

  

常用的数据分析方法有什么

常用的数据分析方法有列表法,作图法,作图法可以最醒目地表达物理量间的变化关系,从图线上还可以简便求出实验需要的某些结果,如直线的斜率和截距值等。

数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,将它们加以汇总和理解并消化,以求最大化地开发数据的功能,发挥数据的作用。数据分析是为了提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。

数据分析方法介绍

1、《数据分析方法》是为高等院校信息与计算科学专业本科生“数据分析课程”编写的教材,内容涉及常用统计数据分析的基本内容与方法,包括数据的描述性分析、线性回归分析、方差分析、主成分分析和典型相关分析、判别分析、聚类分析、Bayes统计分析等。

2、另外,对SAS软件的基本内容以及与以上内容有关的SAS过程做了简介,以便于各种方法的实际应用。各章均配备了丰富的有实际应用背景的习题。

数据分析的方法包括哪些

数据分析的方法包括PEST分析法、SWOT分析法、5W2H分析法等等。PEST为一种企业所处宏观环境分析模型,从政治(Politics)、经济(Economy)、社会(Society)、技术(Technology)四个方面分析内外环境,适用于宏观分析。

excel数据分析方法五种

1、方法一:快速填充。选中B2单元格,输入包子,按Enter定位到B3单元格中,按Ctrl+E,惊喜的发现所有姓名都被分列出来了。

2、方法二:分列。选中A2:A20数据区域,数据选项卡,分列。下一步,分隔符号选择逗号,下一步,目标区域选择$2$2。完成,所有数据都分列出来了。

3、方法三:分组对比法。分组之后,我们就可以对数据进行汇总计算了。常见的方法是通过求和、平均值、百分比、技术等方式,把相同类别的数据,汇总成一个数据,减少数据量。

4、方法四:数据透视表。点击【插入】选项卡中的【数据透视表】,打开对话框,确定选区,点击确定。然后就可以在新的工作表中看到数据透视表视图,只需要拖动表格字段到【行】【列】【值】中,就可以得到相应的数据统计表格。

5、方法五:VBA自定义函数。Alt+F11打开VBE编辑器,插入模块,“通用”下方输入自定义函数。

exsle数据分析方法

1、点击“文件”,点击“选项”。

2、选择加载项,选择分析工具库,选择完成点击“转到”。

3、选中分析工具库和分析工具库-VBA,点击“确定”。

4、点击“数据”,点击“数据分析”,选择想要的分析方法。

红外热像检测中检测数据分析与处理的判断方法有哪些

  • 红外热像检测中检测数据分析与处理的判断方法有哪些
  • 通过观测和拍摄设备的温度照片,发现温度氦弗份煌莓号逢铜抚扩异常点,来判断设备存在的故障隐患,比如某电缆压线位置温度异常高,可以判断接头老化

急求!!!谁有数据分析方法梅长林版的课后习题答案,程序,急求 98-65-47652

  • 能发给我吗????问题补充: 发至 ::::::986547652
  • 姐我有要 不
版权声明